Generalized Power Domination in Regular Graphs
نویسندگان
چکیده
In this paper, we continue the study of power domination in graphs (see SIAM J. Discrete Math. 15 (2002), 519–529; SIAM J. Discrete Math. 22 (2008), 554–567; SIAM J. Discrete Math. 23 (2009), 1382–1399). Power domination in graphs was birthed from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A set of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set following a set of rules (according to Kirschoff laws) for power system monitoring. The minimum cardinality of a power dominating set of a graph is its power domination number. We show that the power domination of a connected cubic graph on n vertices different from K3,3 is at most n/4 and this bound is tight. More generally, we show that for k ≥ 1 the k-power domination number of a connected (k+2)-regular graph on n vertices different from Kk+2,k+2 is at most n/(k + 3), where the 1-power domination number is the ordinary power domination number. We show that these bounds are tight.
منابع مشابه
Generalized power domination of graphs
In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...
متن کاملDomination and Signed Domination Number of Cayley Graphs
In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.
متن کاملPower domination in some classes of graphs
The problem of monitoring an electric power system by placing as few phase measurement units (PMUs) in the system as possible is closely related to the well-known domination problem in graphs. The power domination number γp(G) is the minimum cardinality of a power dominating set of G. In this paper, we investigate the power domination problem in Mycielskian and generalized Mycielskian of graphs...
متن کاملGeneralized power domination: propagation radius and Sierpiński graphs
The recently introduced concept of k-power domination generalizes domination and power domination, the latter concept being used for monitoring an electric power system. The k-power domination problem is to determine a minimum size vertex subset S of a graph G such that after setting X = N [S], and iteratively adding to X vertices x that have a neighbour v in X such that at most k neighbours of...
متن کاملPower domination in cylinders, tori, and generalized Petersen graphs
A set S of vertices is defined to be a power dominating set (PDS) of a graph G if every vertex and every edge in G can be monitored by the set S according to a set of rules for power system monitoring. The minimum cardinality of a PDS of G is its power domination number. In this article, we find upper bounds for the power domination number of some families of Cartesian products of graphs: the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 27 شماره
صفحات -
تاریخ انتشار 2013